An Interior-Point Algorithm for Linearly Constrained Optimization
نویسنده
چکیده
We describe an algorithm for optimization of a smooth function subject to general linear constraints. An algorithm of the gradient projection class is used, with the important feature that the \projection" at each iteration is performed using a primal-dual interior point method for convex quadratic programming. Convergence properties can be maintained even if the projection is done inexactly in a well-deened way. Higher-order derivative information on the manifold deened by the apparently active constraints can be used to increase the rate of local convergence.
منابع مشابه
A path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملA New Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semi-Definite Optimization
We present a new full Nesterov and Todd step infeasible interior-point algorithm for semi-definite optimization. The algorithm decreases the duality gap and the feasibility residuals at the same rate. In the algorithm, we construct strictly feasible iterates for a sequence of perturbations of the given problem and its dual problem. Every main iteration of the algorithm consists of a feasibili...
متن کاملA first-order interior-point method for linearly constrained smooth optimization
We propose a first-order interior-point method for linearly constrained smooth optimization that unifies and extends first-order affine-scaling method and replicator dynamics method for standard quadratic programming. Global convergence and, in the case of quadratic program, (sub)linear convergence rate and iterate convergence results are derived. Numerical experience on simplex constrained pro...
متن کاملA Primal-Infeasible Interior Point Algorithm For Linearly Constrained Convex Programming
In the paper a primal-infeasible interior point algorithm is proposed for linearly constrained convex programming. The starting point is any positive primal-infeasible dual-feasible point in a large region. The method maintains positivity of the iterates which point satisfies primalinfeasible dual-feasible point. At each iterates it requires to solve approximately a nonlinear system. It is show...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 2 شماره
صفحات -
تاریخ انتشار 1992